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PARAMETER REPEATABILITY FOR ECONOMY. 
A CASE STUDY OF A SIMPLE LINEAR ELECTRICAL DEVICE 

Antoni Drapella & Tadeusz Niemczyk  

Summary 

This paper is the first installment of a projected three-part study devoted to both 
input and output parameter randomness that electrical circuit designers deal with in their 
work. Parts of the study will differ in the complexity of schemes considered. This paper 
aims at presenting the methodology while leaving aside the analysis of complex circuits. 
Therefore, only voltage dividers have been taken into consideration. Four probability 
distributions of resistor values have been tried: uniform, Gaussian, Laplace and 
triangular. 
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Introduction 

This paper is devoted to circuits composed of discrete components. As a rule, values of 
component parameters are random variables differing from their nominal values due to 
unavoidable production imperfection. Let us call this phenomenon input randomness. This leads 
to output randomness, i.e. parameters of circuits are random variables too. In other words, input 
randomness causes output randomness. The term repeatability used in the title and further 
throughout the paper is complementary to output randomness. Repeatability assessment of 
electronic devices is a part of their reliability assessment [1]. From a purely mathematical point 
of view, the investigation of repeatability consists, at least at the beginning, in the derivation of 
the probability distribution of a function of several random variables. This sometimes covers a 
multitude of variables. Although probability theory offers tools designed specifically to derive 
probability densities of functions of several random variables, these are completely inapplicable 
in practice when we deal with more than two variables. In this situation, the Monte Carlo 
method proves to be the only solution. 

It is common to assume that input randomness is of a Gaussian type, i.e. component 
parameters follow a normal (Gaussian) distribution. The nominal parameter determines the 
value of the location parameters. One third of the tolerance interval determines the scale 
parameter. Assuming a Gaussian (Normal) distribution is nothing else but wishful thinking. For 
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different production factors the actual distribution may depart far from normality. So, in this 
paper not only the Gaussian but also the Laplace, uniform and triangular distributions have been 
employed. 

1. Simple voltage divider  

Figure 1. A scheme of a simple voltage divider 

Source: own work  

The transfer function has the form: 
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We assume that, due to the imperfection of production, both R1 and R2 are random 
variables. 

 2. Probabilistc models employed in this paper 

Actual resistance probability distributions are unknown. In this paper we employ four 
probabilistic models [2] of these unknown distributions. Table 1 explains what particular 
assumptions really mean. 

Table 1 A list of applied probability distributions. 

Distribution Meaning Formula 

Gaussian 
Most devices that comprise production batch have their values 
close to the nominal value. The rest forms long tenuous tails. Greater 
deviations from nominal value are rare. 

(2 -5) 

Uniform 
The opposite of the above distributions. Any deviation from the nominal 
value, even the greatest, is of the same probability. 

(7) 

Triangle 
Although very rarely used in practice it is employed as a reasonable 
compromise between the Gaussian / Laplace and Uniform distributions. 

(8) 

Laplace 
Similar to the Gaussian but more concentrated around the mean values and 
more tenuous tails 

(9) 

 
The probability density function of the Gaussian distribution. Strictly speaking, it is the 

doubly censored Gaussian distribution. 
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where ul RR ,  are lower and upper censoring limit, respectively, C  is the normalization 

constant. 

∫
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
⋅−⋅

⋅⋅
=

U

L

R

R R

o

R

dRRRC
2

2
1exp

2
1

σσπ
 (3) 

 
oR  is the nominal value 
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Rσ is standard deviation 
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olt  is resistance tolerance 
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The probability density function of the uniform distribution: 
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The probability density function of the triangular distribution. 
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The probability density function of the Laplace distribution: 
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In this paper, nominal values of resistors oR  are the same and equal to Ω1000 . As regards 
a set of tolerances, it contains typical tolerances, namely %20%;10%;5%;2%;1%;5.0=olt . 
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Moreover, tolerances that appear in practice very rarely, namely %3=olt  and %15=olt  were 
added to the set to make figures having olt  as an independent variable smoother. Figure 2 
compares visually the distributions employed in this paper. We can also compare distributions 
in question numerically in terms of the entropy denoted as Ewhich is defined as [1]: 
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Figure 2. Density functions of distributions employed in this paper. 
Source: own work.  

Table 2 contains entropy formulas that hold for distributions employed. 

Table 2. Entropy formulas for probability distributions applied. 

Distribution Formula 
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Figure 3 shows how the entropies of distributions in question grow when tolerances of 
resistors are widened. 

Figure 3. The entropy versus tolerances of resistors 
Source: own work. 

3. Generators of random numbers 

Let unfr be the random number that follows the uniform distribution located within >< 1.0
interval. 
The normal random values of resistors were generated according the following formula: 
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The triangular random values of resistors were generated according to the following 
formula: 
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The Laplace random values of resistors were generated according to the following formula: 
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4. Modelling the market of devices 

Let us imagine that our voltage divider is designed to be mass-produced and sold. Market 
demand, further denoted asDem , is the probability for a particular device to be sold. Prior to 
introducing the demand formula, we define some auxiliary variables, namely: 

prodC  that is the cost of the device to be produced, 

rofP  that is the projected profit per device, 

refC  that is the reference cost which guarantees that demand is equal to one, i.e. all devices 
will be sold. 

 The following total cost function is the kernel of the market model: 
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where Mel  reflects market flexibility with respect to price. In this simple market, the 
model price is the sum of the production cost and profit. 

The demand formula has been constructed as follows: 
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Figure 4 exemplifies a price-demand relation that follows from (15). 
 

Figure 4. Demand for devices versus their price. 

Source: own work. 

The production cost denoted as prodC  has three components 

 o
R
tol

R
tolprod CCCC ++= 21  (16) 
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where 1R
tolC  and 2R

tolC are the costs of all the efforts made to achieve the required tolerances 
of 1R  and 2R , whereas oC  covers all production costs not related to the tolerances. 

Tolerance-related costs were defined in the following way: 
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where ref
olt is the reference tolerance, i.e. such tolerance that costs the least. Further in this 

paper we assume %20=ref
olt . In numerical experiments, values of ρ  parameter were chosen 

from >< 2,0  interval. 

5. Assessing production yield 

Let uK
olt  be the required tolerance of the transfer function. Thus, 

 ( ) ( ) u
K
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K
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Obviously, the producer wants all the devices to fulfil requirement (18). But some of the 
devices will not fulfil the requirement due to an unpropitious coincidence of resistor values e.g. 
both being at the limits of tolerance intervals. The fraction of devices that fulfil (18) is 
commonly termed yield. Figures 5A – 5D show how resistor tolerances and their distributions 
impact yield. 

 
Figure 5A. The yield when resistances are normally distributed  

Source: own work 
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Figure 5B. The yield when resistances are distributed according to the Laplace distribution 

Source: own work 

 

 
Figure 5C. The yield when resistances are triangularly distributed  

Source: own work 
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Figure 5D. The yield when resistances are uniformly distributed 

Source: own work. 

6. Maximizing producer’s income 

It is a reasonable step for the producer of devices in question to try to maximize his 
income, further denoted as ncomeI . Let us concretize this task and define the income function of 
the form: 
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Combinations of parameter values in (19) form an uncountable set. Table 3 contains input 
data that were arbitrarily but reasonably chosen for numerical experiments. 

Table 3. Input data 

Notation Value Notation Value 

oC  10 2R  1000Ω 

refC  20% ρ  1 
Mel  0.5 Ku

olt  5% 

1R  1000Ω ref
olt  20% 
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Figure 6. Planned profit versus planned income. 

Source: own work 

Conclusions 

Conclusion 1. 
Let us look at set of figures 5 from A to D. They refer to particular distributions and show 

how tolerances of 1R  and 2R  impact production yield. As long as tolerances are relatively 
narrow i.e. %5≤ , distributions have no noticeable impact on production yield. Widening 
tolerances causes the yield to drop significantly. So, (for a set of input data collected in Table 3, 
of course) %5 tolerances for both 21,RR  components seem to be optimal as balancing the cost 
of components and the production yield. But this holds only when no market-related factors are 
taken into account! 

Conclusion 2. 
All the relations we consider basically change when we embed tolerances and their cost 

into the market model. Two conditions for devices to be sold are included in the model: a 
particular device fulfils technical requirements and finds a buyer. Widening tolerances 
decreases production yield but also decreases the price of the device which, in turn, makes the 
device more merchantable. In other words, demand for the device increases. Figure 5 shows 
wanted-versus-earned profit curve and encapsulates what was said above. The curve reaches its 
maximum at 74 (some imaginary currency units). Relevant optimal tolerances are much wider 
than in conclusion 1, namely: %15%,10 21 == R

ol
R
ol tt . 
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Conclusion 3. 
What was said in Conclusion 2 holds true on the understanding that resistor values follow 

the normal distribution. Figure 6 shows that a departure from normality has only a slight impact 
on the producer’s income. 
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POWTARZALNOŚCI PARAMETRÓW WYROBU A JEGO KOSZT 
WYTWARZANIA NA PRZYKŁADZIE DZIELNIKA NAPIĘCIOWEGO 

Streszczenie 

Niniejszy artykuł jest pierwszym z trzyczęściowego studium poświęconego 
losowości zarówno wejściowych jak i wyjściowych parametrów wyrobu z jaką projektant 
styka się w swej pracy. Części wspomnianego studium będą różnić się złożonością 
rozpatrywanych w nich wyrobów. Niniejszy artykuł ma pokazać metodologię. 
Analizowanie złożonych układów odłożono na później i rozpatrzono tylko prosty dzielnik 
napięciowy. Modelowano zakładając cztery rozkłady prawdopodobieństwa rezystorów: 
Równomierny, Normalny, Laplacea i Trójkątny. 

Słowa kluczowe: Dzielnik napięciowy, metoda Monte Carlo. 
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